找回密码
 立即注册
搜索
热搜: 股票
查看: 2|回复: 0

大数据工程师2023版体系课

[复制链接]

0

主题

0

回帖

12

积分

管理员

积分
12
发表于 2024-10-5 07:30:01 | 显示全部楼层 |阅读模式

 大数据已成为高薪岗位的代名词,更是前景无限的热门技术

2023版,硬核技能带你攻克热点商业项目,从入门直达中级工程师水平,掌握DT时代淘金利器!

课程目录

├──{1}--阶段一:走进大数据  

|   ├──{1}--学好大数据先攻克Linux  

|   |   └──{1}--第1章 笑傲大数据成长体系课【必看】  

|   ├──{3}--Hadoop之HDFS的使用  

|   |   ├──{2}--第2章 HDFS基础操作  

|   |   └──{3}--第3章 Java操作HDFS  

|   └──{4}--Hadoop之HDFS核心进程剖析  

|   |   ├──{3}--第3章 HDFS高级  

|   |   └──{4}--第4章 【扩展内容】HDFS写数据源码剖析  

├──{2}--阶段二:PB级离线数据计算分析存储方案  

|   ├──{1}--拿来就用的企业级解决方案  

|   |   └──{6}--第6章 【福利加油站】  

|   └──{5}--快速上手NoSQL数据库HBase  

|   |   ├──{1}--第1章 快速了解HBase  

|   |   ├──{3}--第3章 深入HBase架构原理  

|   |   ├──{4}--第4章 HBase高级用法  

|   |   └──{5}--第5章 HBase调优策略和扩展内容  

├──{3}--阶段三:Spark+综合项目:电商数据仓库设计与实战  

|   ├──{2}--Spark快速上手  

|   |   ├──{1}--第1章 初识Spark  

|   |   ├──{2}--第2章 解读Spark工作与架构原理  

|   |   ├──{3}--第3章 Spark实战:单词统计  

|   |   ├──{4}--第4章 Transformation与Action开发实战  

|   |   ├──{5}--第5章 RDD持久化  

|   |   ├──{6}--第6章 TopN主播统计  

|   |   └──{7}--第7章 面试与核心复盘  

|   ├──{3}--Spark性能优化的道与术  

|   |   ├──{1}--第1章 Spark三种任务提交模式  

|   |   ├──{2}--第2章 Shuffle机制分析  

|   |   ├──{3}--第3章 Spark之checkpoint  

|   |   ├──{4}--第4章 Spark程序性能优化企业级最佳实践  

|   |   ├──{5}--第5章 Spark性能优化之算子优化  

|   |   ├──{6}--第6章 极速上手SparkSql  

|   |   └──{7}--第7章 Spark实战与核心复盘  

|   ├──{4}--Spark3.x扩展内容  

|   |   ├──{1}--第1章 快速上手使用Spark 3.x  

|   |   ├──{2}--第2章 Spark 3.x版本中新特性的原理及应用  

|   |   └──{3}--第3章 SparkSQL 集成 Hive  

|   └──{6}--综合项目:电商数据仓库之商品订单数仓  

|   |   ├──{1}--第1章 商品订单数仓需求分析  

|   |   ├──{2}--第2章 需求设计与实现  

|   |   ├──{3}--第3章 订单拉链表实战  

|   |   ├──{4}--第4章 数据可视化和任务调度实现  

|   |   ├──{5}--第5章 项目核心复盘  

|   |   └──{6}--第6章 数据压缩格式和存储格式在数仓中的应用  

├──{4}--阶段四:高频实时数据处理+海量数据全文检索方案  

|   ├──{10}--全文检索引擎Elasticsearch  

|   |   ├──{1}--第1章 快速了解Elasticsearch  

|   |   ├──{2}--第2章 快速上手使用Elasticsearch  

|   |   ├──{3}--第3章 Elasticsearch分词详解  

|   |   ├──{4}--第4章 Elasticsearch查询详解  

|   |   └──{5}--第5章 Elasticsearch的高级特性  

|   ├──{11}--Es+HBase仿百度搜索引擎项目  

|   |   └──{5}--第5章 项目中遇到的典型问题  

|   ├──{2}--极速上手内存数据库Redis  

|   |   ├──{1}--第1章 快速了解Redis  

|   |   ├──{2}--第2章 Redis核心实践  

|   |   ├──{3}--第3章 Redis封装工具类技巧  

|   |   ├──{4}--第4章 Redis高级特性  

|   |   └──{5}--第5章 Redis核心复盘  

|   ├──{3}--Flink快速上手篇  

|   |   ├──{1}--第1章 初识Flink  

|   |   ├──{2}--第2章 实战:流处理和批处理程序开发  

|   |   ├──{3}--第3章 Flink集群安装部署  

|   |   ├──{4}--第4章 Flink核心API之DataStream API  

|   |   ├──{5}--第5章 Flink核心API之DataSet API  

|   |   ├──{6}--第6章 Flink核心API之Table API和SQL  

|   |   └──{7}--第7章 Flink核心复盘  

|   ├──{4}--Flink高级进阶之路  

|   |   ├──{1}--第1章 Flink中的Window和Time详解  

|   |   ├──{2}--第2章 Flink中的Watermark深入剖析  

|   |   ├──{3}--第3章 Flink中的并行度详解  

|   |   ├──{4}--第4章 Flink之Kafka Connector专题  

|   |   ├──{5}--第5章 SparkStreaming快速上手  

|   |   ├──{6}--第6章 Flink核心复盘  

|   |   └──{7}--第7章 【福利加油站】  

|   ├──{5}--Flink1.15新特性及状态的使用  

|   |   ├──{1}--第1章 Flink新版本新特性介绍  

|   |   ├──{2}--第2章 快速上手使用Flink 1.15  

|   |   └──{3}--第3章 State(状态)的使用与管理  

|   ├──{6}--Flink1.15之状态的容错与一致性  

|   |   ├──{1}--第1章 State(状态)的容错与一致性  

|   |   ├──{2}--第2章 Checkpoint与State底层原理深度剖析  

|   |   └──{3}--第3章 Kafka-connector新API的使用  

|   ├──{7}--FlinkSQL(1.15)快速上手  

|   |   ├──{1}--第1章 Flink SQL快速理解  

|   |   ├──{2}--第2章 Flink SQL中的表类型详解  

|   |   ├──{3}--第3章 Flink SQL常见的数据类型  

|   |   ├──{4}--第4章 Flink SQL中的列类型详解  

|   |   ├──{5}--第5章 Flink SQL中的DML语句详解  

|   |   ├──{6}--第6章 Flink SQL中的Catalog  

|   |   ├──{7}--第7章 Flink SQL如何兼容Hive  

|   |   └──{8}--第8章 Flink SQL Client客户端工具  

|   ├──{8}--FlinkSQL双流JOIN详解  

|   |   ├──{10}--第10章 Flink SQL扩展内容  

|   |   ├──{1}--第1章 Flink SQL双流 Join概述  

|   |   ├──{2}--第2章 Flink SQL双流 Join之普通Join  

|   |   ├──{3}--第3章 Flink SQL双流 Join之时间区间Join  

|   |   ├──{4}--第4章 Flink SQL双流 Join之快照Join  

|   |   ├──{5}--第5章 Flink SQL双流 Join之维表Join  

|   |   ├──{6}--第6章 Flink SQL双流 Join之数组炸裂  

|   |   ├──{7}--第7章 Flink SQL双流 Join之表函数Join  

|   |   ├──{8}--第8章 Flink SQL双流 Join之窗口 Join  

|   |   └──{9}--第9章 Flink SQL 双流JOIN总结  

|   └──{9}--实时OLAP引擎之ClickHouse  

|   |   ├──{1}--第1章 OLAP数据分析引擎整体概述  

|   |   ├──{2}--第2章 快速了解ClickHouse  

|   |   ├──{3}--第3章 快速上手使用ClickHouse  

|   |   ├──{4}--第4章 ClickHouse核心内容  

|   |   ├──{5}--第5章 ClickHouse分布式集群  

|   |   └──{6}--第6章 ClickHouse数据查询  

├──{5}--阶段五:综合项目:三度关系推荐系统+数据中台  

|   ├──{2}--实时数仓-Flink CDC数据采集  

|   |   ├──{1}--第1章 Flink CDC快速理解  

|   |   ├──{2}--第2章 Flink CDC之MySQL CDC  

|   |   ├──{3}--第3章 MySQL CDC支持的高级特性  

|   |   └──{4}--第4章 MySQL CDC扩展内容  

|   ├──{3}--直播平台三度关系推荐V1.0  

|   |   ├──{1}--第1章 项目介绍及演示  

|   |   ├──{2}--第2章 项目技术选型  

|   |   ├──{3}--第3章 Neo4j图数据库快速上手使用  

|   |   ├──{4}--第4章 数据采集模块分析  

|   |   ├──{5}--第5章 数据采集+聚合+分发+落盘  

|   |   ├──{6}--第6章 数据计算核心指标分析  

|   |   ├──{7}--第7章 数据核心指标计算  

|   |   └──{8}--第8章 项目核心复盘  

|   └──{4}--直播平台三度关系推荐V2.0  

|   |   ├──{1}--第1章 V1.0架构方案分析及V2.0架构设计  

|   |   ├──{2}--第2章 V2.0架构之数据核心指标计算  

|   |   ├──{3}--第3章 数据接口定义及开发  

|   |   ├──{4}--第4章 数据展示  

|   |   ├──{5}--第5章 项目扩展优化  

|   |   └──{6}--第6章 项目核心复盘  

└──源码  

|   ├──bigdata_course_materials-master.zip  18.55M

|   ├──data_screen-master.zip  17.07kb

|   ├──db-sparkstreaming-master.zip  11.14kb

|   ├──db_clickhouse-master.zip  8.24kb

|   ├──db_data_warehouse-master.zip  26.97kb

|   ├──db_flink-master.zip  66.33kb

|   ├──db_flink15-master.zip  102.59kb

|   ├──db_flinkcdc-master.zip  39.21kb

|   ├──db_fullsearch-master.zip  5.64M

|   ├──db_kafka-master.zip  8.83kb

|   ├──db_redis-master.zip  8.97kb

|   ├──db_spark3-master.zip  21.03kb

|   ├──flink-1.15.0-src-master.zip  49.21M

|   └──hadoop-3.2.0-src-master.zip  43.14M

 
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|小黑屋|奇缘网站资源分享

GMT+8, 2024-12-27 10:09 , Processed in 0.022372 second(s), 3 queries , Redis On.

快速回复 返回顶部 返回列表